If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-4y-192=0
a = 1; b = -4; c = -192;
Δ = b2-4ac
Δ = -42-4·1·(-192)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-28}{2*1}=\frac{-24}{2} =-12 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+28}{2*1}=\frac{32}{2} =16 $
| 525-3(2w-3)+3w=7(3w-21)+42(3w-1)-4(w+5)+13 | | 3(5-16y)-7(9-7y)=0 | | 2y2-9y-56=0 | | 5s+16=66 | | 11-5x=4x-6x | | 4X^4+11x²-3=0 | | 4x4+11-3=0 | | W^2-36w+243=0 | | 6m+3=15+2m | | x(x-2)=675 | | 1x=1000+0.30x | | -2(5+n-8-3n)=0 | | y+17=-16 | | 4(5a-6)=31 | | -10x+22=-2x-10 | | 2(4u+2)=56 | | 25x+8=10x+2 | | -1/3x+6=2/3x+28 | | 4×n=36 | | 19x+18=398 | | 19x+18=380 | | 490709.23=0.2x | | 180÷y=145 | | 16x-39=89 | | 22p-6=18 | | 6u+9=10 | | 4w-7(3w+4)=2 | | 9x+2=350+9x | | -21y-6=62 | | 5(4w+6)/2=9 | | -10(s+1)=-28 | | (4l-6)=5555 |